Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 120: 104476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431322

RESUMO

Globally, the spread of multidrug-resistant Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae from food to humans poses a severe threat to public health. The aim of this study was to assess the co-occurrence of colistin and ß-lactamase resistance genes in E. coli, K. pneumoniae, and P. aeruginosa strains isolated from faeces of abattoir broiler chickens. The E. coli, P. aeruginosa and K. pneumoniae isolates were successfully detected from faecal samples by polymerase chain reaction (PCR) at infection rates of 60.7%, 22.5% and 16.7% respectively. The isolates displayed the highest levels of antibiotic resistance (AR) against ampicillin (82.3%) and amoxicillin-clavulanic acid (74.2%) for E. coli, followed by cefoxitin (70.6%) for K. pneumoniae, whilst P. aeruginosa displayed 26.1% antibiotic resistance (AR) against both ampicillin and colistin sulphate. The colistin mcr-1 gene was harboured by 46.8%, 47.1% and 21.7%, E. coli, K. pneumonia and P. aeruginosa isolates respectively. Ten out of 62 (16.1%), 6/17 (35.3%), 4/23 (17.4%) isolates were phenotypically classified as ESBL E. coli, K. pneumoniae, and P. aeruginosa respectively. The ESBL-E. coli isolates respectively possessed blaCTX-M (60%), blaTEM (20%) and blaCTX-M-9 (10%) genes. The ESBL-K. pneumoniae harboured, blaCTX-M (50%), blaOXA (33%), blaCARB (17%), and blaCTX-M-9 (17%) genes respectively, whilst, P. aeruginosa isolates respectively carried blaTEM (75%), blaCTX-M (50%), blaOXA (25%) and blaCARB (25%) genes. Molecular analysis identified the blaCTX-Mß-lactamase-encoding genes collectively from E. coli, P. aeruginosa, K. pneumoniae isolates. Colistin and ß-lactamase genes were present in only 16.7%, 6.9%, and 2.9% of E. coli, K. pneumoniae, and P. aeruginosa isolates, respectively. A total of 17, 7 and 3 isolates for E. coli, K. pneumoniae and P. aeruginosa respectively carried both colistin and ß-lactamase antibiotics resistant genes. This is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Data generated from this study will contribute to formulation of new strategies for combating spread of E. coli, K. pneumoniae, and P. aeruginosa isolates as well as prevention of their AR development.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Animais , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Galinhas , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Infecções por Escherichia coli/microbiologia , Ampicilina , Testes de Sensibilidade Microbiana
2.
Exp Parasitol ; 259: 108711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355002

RESUMO

Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 µM; SI 686.45) and 9 (IC50 0.07 ± 0.04 µM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 µM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 µM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 µM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 µM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 µM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Nitrofurantoína/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Mamíferos
3.
Vet Med Sci ; 10(2): e1371, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357843

RESUMO

BACKGROUND: Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE: This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS: A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS: All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS: The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.


Assuntos
Galinhas , Proteus mirabilis , Animais , Humanos , Proteus mirabilis/genética , Virulência/genética , Levofloxacino , Matadouros , África do Sul/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Ciprofloxacina
4.
Vet Parasitol Reg Stud Reports ; 47: 100969, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199685

RESUMO

The role of ixodid ticks especially Rhipicephalus sanguineus and Heamaphysalis elliptica in the epidemiology of several diseases of veterinary and public health importance have been documented. This study conducted a systematic review focusing on the distribution of R. sanguineus and H. elliptica, as well as the common tick-borne pathogens they harbour. The Scopus, ScienceDirect, PubMed, and Web of Science databases were used to search for English journal articles published between January 1990 and June 2021. The articles were assessed by following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This systematic review was registered on PROSPERO [(ID no: CRD42022327372). Of the studies included in the systematic review, 247 and 19 articles had identified R. sanguineus and H. elliptica respectively, whereas 15 articles had identified both tick species. There is a reported worldwide distribution of R. sanguineus from 64 countries, whereas H. elliptica was only reported in the African continent from 6 countries. In total, 120 articles that were included in this systematic review reported detection of tick-borne pathogens from R. sanguineus (n = 118 articles) and/or H. elliptica (n = 2 articles) ticks. According to the studies tick-borne pathogens harboured by R. sanguineus included protozoa such as Babesia spp., Hepatozoon spp., Leishmania spp., and Theileria spp., as well as bacteria such as Acinetobacter spp. Anaplasma spp., Bacillus spp., Borrelia spp., Brucella spp., Coxiella spp., and Staphylococcus spp. The H. elliptica was reported to be harbouring Babesia spp., Ehrlichia spp. and Rickettsia spp. Most of the studies (50%) used the conventional polymerase chain reaction (PCR) technique for the detection of tick-borne pathogens, followed by real-time PCR (qPCR) (n = 26), and nested PCR (n = 22). This systematic review has shed light on the distribution of two common dog ticks as well as the tick-borne pathogens of veterinary and zoonotic importance they are harbouring. This data will enable surveillance studies that can report whether the distribution of these ticks and their associated tick-borne pathogens is expanding or shrinking or is stable.


Assuntos
Babesia , Borrelia , Ixodidae , Rhipicephalus sanguineus , Cães , Animais , Anaplasma
5.
Animals (Basel) ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38200885

RESUMO

Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens.

6.
Int J Microbiol ; 2024: 5213895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38222969

RESUMO

Reptiles are carriers of an array of microorganisms, including significant zoonotic bacteria of the genus Salmonella, which cause a disease referred to as salmonellosis that affects both animals and humans. This study investigated the occurrence of Salmonella serovars in wild reptiles at Timbavati Private Game Reserve in Limpopo Province, South Africa, and examined their virulence and antimicrobial resistance gene profiles. A total of 19 wild reptiles were sampled, which resulted in 30 presumptive Salmonella isolates. The isolates were identified using polymerase chain reaction (PCR) by amplifying the invA gene and were further confirmed by 16S rRNA gene sequencing. Salmonella serovars were detected in chameleons (36.8%), lizards (31.6%), snakes (15.8%), and tortoises (15.8%). The use of 16S rRNA gene sequencing revealed that Salmonella enterica subsp. enterica serovar Salamae (30%), S. enterica subsp. enterica (16.7%), S. enterica subsp. enterica serovar Typhimurium (13.3%), and S. enterica subsp. enterica serovar Indiana (13.3%) were the four most common subspecies among the investigated 30 isolates. Detected virulence genes included pagN (100%), hilA (96.7%), ssrB (96.7%), prgH (86.7%), and marT (86.7%). The isolates exhibited resistance to nalidixic acid (43.3%) and kanamycin (43.3%), followed by streptomycin (16.7%) and ciprofloxacin (3.3%). Antibiotic-resistant genes were detected as follows: strA, strB, qnrA, qnrS, parC, aadA, aac(6')-Ib, and aac(6')-Ib-cr at 33.3%, 6.7%, 16.7, 13.3%, 10%, 23.3%, 6.7%, and 10%, respectively. The findings highlight the necessity of educational initiatives aimed at reducing reptile-related infections. Effective antibiotic treatment appears promising for infection, given the minimal drug resistance observed in reptile Salmonella serovars in the current study.

7.
Trop Med Health ; 52(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173018

RESUMO

BACKGROUND: In sub-Saharan Africa (SSA), significant morbidity and mortality have been linked to diarrhea, which is frequently caused by microorganisms. A rise in antimicrobial-resistant pathogens has reignited the search for alternative therapies. This scoping review aims to map the literature on medicinal plants in relation to their anti-diarrheal potential from SSA. METHODS: Studies published from 1990 until April 2022 on medicinal plants used for the treatment of diarrhea from each country in SSA were searched on Scopus, Web of Science, Science Direct and PubMed. The selection of articles was based on the availability of data on the in vitro and/or in vivo, ethnobotanical, and cross-sectional studies on the efficacy of medicinal plants against diarrhea. A total of 67 articles (ethnobotanical (n = 40); in vitro (n = 11), in vivo (n = 7), cross-sectional (n = 3), in vitro and in vivo (n = 2) and ethnobotanical and in vitro (n = 2), were considered for the descriptive analysis, which addressed study characteristics, herbal intervention information, phytochemistry, outcome measures, and toxicity findings. RESULTS: A total of 587 different plant species (from 123 families) used for diarrhea treatment were identified. Most studies were conducted on plants from the Fabaceae family. The plants with the strongest antimicrobial activity were Indigofera daleoides and Punica granatum. Chromatographic methods were used to isolate six pure compounds from ethyl acetate extract of Hydnora johannis, and spectroscopic methods were used to determine their structures. The majority of anti-diarrheal plants were from South Africa (23.9%), Ethiopia (16.4%), and Uganda (9%). This study highlights the value of traditional remedies in treating common human diseases such as diarrhea in SSA. CONCLUSION: Baseline knowledge gaps were identified in various parts of SSA. It is therefore recommended that future ethnobotanical studies document the knowledge held by other countries in SSA that have so far received less attention. Additionally, we recommend that future studies conduct phytochemical investigations, particularly on the widely used medicinal plants for the treatment of diarrheal illnesses, which can serve as a foundation for future research into the development of contemporary drugs.

8.
Mol Biol Rep ; 51(1): 57, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165462

RESUMO

BACKGROUND: The Shiga toxin (Stx)-producing Escherichia coli (STEC) have become important global public health concerns. This study investigated the prevalence, antimicrobial resistance profile, and extended-spectrum beta-lactamase-producing E. coli in sheep and goat faeces. METHODS AND RESULTS: A total of 53 E. coli isolates were confirmed by PCR targeting the uidA [ß-D glucuronidase] gene. The Shiga toxin genes stx1 and stx2, as well as bfpA, vir, eaeA, lt and aafII virulence genes, were detected in this study. Of the 53 isolates confirmed to be STEC, 100% were positive for stx2 and 47.2% for stx1. Three isolates possessed a combination of stx1 + stx2 + eaeA, while four isolates harboured stx1 + stx2 + vir virulence genes. The isolates displayed phenotypic antimicrobial resistance against erythromycin (66.04%), colistin sulphate (43.4%), chloramphenicol (9.4%) and ciprofloxacin (1.9%). A total of 28.8% of the strains were phenotypically considered ESBL producers and contained the beta-lactamase blaCTX-M-9 and blaCTX-M-25 gene groups. A larger proportion of the E. coli strains (86.8%) contained the antibiotic sulphonamide resistant (sulII) gene, while 62.3%, 62.3%, 52.8%, 43.4%, 41.5%, 20.8%, 18.9%, 11.3%, 11.3%, 9.4%, 9.4% and 5.7% possessed mcr-4, floR, mcr-1, tet(A), sulI, tet(O), tet(W), parC, mcr-2, ampC 5, qnrS and ermB genes, respectively. Thirteen isolates of the ESBL-producing E. coli were considered multi-drug resistant (MDR). One Shiga toxin (stx2) and two beta-lactamase genes (blaCTX-M-9 and blaCTX-M-25 groups) were present in 16 isolates. In conclusion, the E. coli isolates from the small stock in this study contained a large array of high antibiotic resistance and virulence profiles. CONCLUSIONS: Our findings highlight the importance of sheep and goats as sources of virulence genes and MDR E. coli. From a public health and veterinary medicine perspective, the characterization of ESBL producers originating from small livestock (sheep and goats) is crucial due to their close contact with humans.


Assuntos
Escherichia coli , Cabras , Humanos , Animais , Ovinos , Escherichia coli/genética , Antibacterianos/farmacologia , Hidrolases , Toxinas Shiga
9.
Vet Res Commun ; 48(1): 19-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642820

RESUMO

Coxiella burnetii is a zoonotic intracellular bacterium that is widely distributed and affects domestic animals, wildlife, humans and non-mammalian species. This systematic review was aimed at synthesizing research findings on C. burnetii in both domestic and wild animals of South Africa. The systematic review protocol was registered with Open Society Foundations of systematic reviews ( https://doi.org/10.17605/OSF.IO/8WS ). PRISMA guidelines were followed to collect and evaluate relevant scientific articles published on C. burnetii infecting domestic and wild animals in South Africa. Published articles were sourced from five electronic databases, namely, Google Scholar, PubMed and ScienceDirect, EBSCO and Scopus. Results showed 11 eligible studies involving four domestic animals, three wild animals and one ectoparasite species from seven provinces across South Africa. The occurrence of C. burnetii infection was high in Ceratotherium simum (white rhinoceros) (53.9%), medium in sheep (29.0%) and low in pigs (0.9%). Limpopo province (26%) had the most recorded infections followed by KwaZulu-Natal (19%) and Free State (3%) had the least reported occurrence of C. burnetii. The current study discovered that there is scarcity of published research on prevalence and distribution of C. burnetii infecting domestic and wild animals in South Africa, and this is of concern as this bacterium is an important zoonotic pathogen of "One Health" importance.


Assuntos
Coxiella burnetii , Febre Q , Doenças dos Ovinos , Doenças dos Suínos , Carrapatos , Animais , Humanos , Animais Domésticos , Animais Selvagens , Bactérias , Febre Q/epidemiologia , Febre Q/veterinária , Febre Q/microbiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , África do Sul/epidemiologia , Suínos , Revisões Sistemáticas como Assunto , Carrapatos/microbiologia
10.
Fundam Clin Pharmacol ; 38(1): 72-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37479675

RESUMO

Human African trypanosomosis (HAT) which is also known as sleeping sickness is caused by Trypanosoma brucei gambiense that is endemic in western and central Africa and T. b. rhodesiense that is endemic in eastern and southern Africa. Drugs used for treatment against HAT first stage have limited effectiveness, and the second stage drugs have been reported to be toxic, expensive, and have time-consuming administration, and parasitic resistance has developed against these drugs. The aim of this study was to evaluate the anti-trypanosomal activity of nitrofurantoin-triazole hybrids against T. b. gambiense and T. b. rhodesiense parasites in vitro. This study screened 19 synthesized nitrofurantoin-triazole (NFT) hybrids on two strains of human trypanosomes, and cytotoxicity was evaluated on Madin-Darby bovine kidney (MDBK) cells. The findings in this study showed that an increase in the chain length and the number of carbon atoms in some n-alkyl hybrids influenced the increase in anti-trypanosomal activity against T. b. gambiense and T. b. rhodesiense. The short-chain n-alkyl hybrids showed decreased activity compared to the long-chain n-alkyl hybrids, with increased activity against both T. b. gambiense and T. b. rhodesiense. Incorporation of additional electron-donating substituents in some NFT hybrids showed increased anti-trypanosomal activity than to electron-withdrawing substituents in NFT hybrids. All 19 NFT hybrids tested displayed better anti-trypanosomal activity against T. b. gambiense than T. b. rhodesiense. The NFT hybrid no. 16 was among the best performing hybrids against both T. b. gambiense (0.08 ± 0.04 µM) and T. b.rhodesiense (0.11 ± 0.06 µM), and its activity might be influenced by the introduction of fluorine in the para-position on the benzyl ring. Remarkably, the NFT hybrids in this study displayed weak to moderate cytotoxicity on MDBK cells. All of the NFT hybrids in this study had selectivity index values ranging from 18 to greater than 915, meaning that they were up to 10-100 times fold selective in their anti-trypanosomal activity. The synthesized NFT hybrids showed strong selectivity >10 to T. b. gambiense and T. b. rhodesiense, which indicates that they qualify from the initial selection criteria for potential hit drugs.


Assuntos
Nitrofurantoína , Tripanossomíase Africana , Humanos , Animais , Bovinos , Nitrofurantoína/uso terapêutico , Trypanosoma brucei rhodesiense , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Trypanosoma brucei gambiense
11.
Data Brief ; 51: 109660, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37928322

RESUMO

Paraclostridium bifermentans is a Gram-positive, rod-shaped bacterium that can inhabit various mesophilic environments such as soil, marine habitats, and polluted waters. Some species of Paraclostridium are reported to cause fatal infections in humans, although mechanisms and capacity for adaptation are still unknown. We hereby present the whole genome sequence data of P. bifermentans T2 strain isolated from sheep faecal matter in Potchefstroom, South Africa. DNA libraries were sequenced on the Oxford Nanopore Mk1B platform. The generated sequence data was assembled and polished using Flye assembler. Genome data analysis yielded a genome size of 2 911,782 bp, comprising of a 27.8 % G + C content. Rapid Annotation using Subsystem Technology (RAST) showed that the draft genome of this strain consists of 6 514 coding sequences (CDS). The pan-genome was defined by a total of 16 288 CDSs, grouping the strain with the genome of P. bifermentans SampleS7P1. The draft genome sequence has been deposited in NCBI GenBank with the accession number of JAUPET000000000.

12.
Vet World ; 16(8): 1615-1626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37766712

RESUMO

Background and Aim: Anthelmintic resistance (AR) and acaricide resistance (ACR) pose great economic threat to communal livestock raised by rural communities, limiting sustainable production. This study was conducted to assess the occurrence of AR and ACR against nematodes and ticks that infest small ruminants (sheep and goats) from small-scale farming communities in the North West Province of South Africa, as well as document the associated risk factors. Materials and Methods: The study was conducted on small-scale farming locations in two districts of the North West Province, namely, Dr. Ruth Segomotsi Mompati district and Dr. Kenneth Kaunda district, from November 2019 to March 2020. A questionnaire survey based specifically on antiparasitic treatment and related management practices was administered to 86 small-scale farmers. A fecal egg count reduction test (FECRT) was used to determine in vivo AR in small ruminants against benzimidazole (BZD), levamisole, and macrocyclic lactone on nine ruminant farms. Then, deoxyribonucleic acid was extracted from L3 larvae and resistant nematodes were identified using a polymerase chain reaction, targeting the internal transcribed spacer 2 gene. An egg hatch assay (EHA) and a larval mortality assay (LMA) were used to determine in vitro AR against thiabendazole (TBZ and BZD) in the same farms. Acaricide resistance against fluazuron-flumethrin (Drastic Deadline eXtreme) pour-on was assessed using an adult immersion test (AIT) on Rhipicephalus evertsi. Results: Questionnaire results indicated that most farmers (89%) relied solely on anthelmintics. Farmers used visual appraisal to estimate the dosage, which is the primary cause of resistance. The FECRT revealed AR in all the farms. Egg hatch assay results revealed AR development against TBZ in all districts, with >95% of the eggs hatching at variable doses. Larval mortality assay results revealed the development of resistance against BZD, with 50% of L3 larvae surviving at different doses in all farms. Adult immersion test results indicated that fluazuron-flumethrin (>99%) exhibited high acaricidal efficacy against R. evertsi by inhibiting tick oviposition. Conclusion: This investigation found that sheep and goats in the studied areas are developing AR to gastrointestinal parasites. The findings of in vivo tests showed resistance with fecal egg count reduction percentage of <95% or lower confidence limit of <90%. The results of EHA and LMA revealed no evidence of inhibition of egg development and larval mortality, indicating the development of resistance. Acaricide resistance was not detected against fluazuron-flumethrin, which is commonly used in the study areas. Thus, developing management methods for these economically significant livestock nematodes, including teaching small-scale farmers how to properly administer anthelmintics and acaricides to their livestock, is urgently needed.

13.
Ann Clin Microbiol Antimicrob ; 22(1): 88, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740207

RESUMO

BACKGROUND: The Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) bacterial isolates that produce extended-spectrum ß-lactamases (ESBLs) contribute to global life-threatening infections. This study conducted a systematic review and meta-analysis on the global prevalence of ESBLs in co-existing E. coli and K. pneumoniae isolated from humans, animals and the environment. METHODS: The systematic review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) [ID no: CRD42023394360]. This study was carried out following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. One hundred and twenty-six eligible studies published on co-existing antibiotic resistance in E. coli and K. pneumoniae between 1990 and 2022 were included. RESULTS: The pooled prevalence of ESBL-producing E. coli and K. pneumoniae was 33.0% and 32.7% for humans, 33.5% and 19.4% for animals, 56.9% and 24.2% for environment, 26.8% and 6.7% for animals/environment, respectively. Furthermore, the three types of resistance genes that encode ESBLs, namely blaSHVblaCTX-M,blaOXA, and blaTEM, were all detected in humans, animals and the environment. CONCLUSIONS: The concept of "One-Health" surveillance is critical to tracking the source of antimicrobial resistance and preventing its spread. The emerging state and national surveillance systems should include bacteria containing ESBLs. A well-planned, -implemented, and -researched alternative treatment for antimicrobial drug resistance needs to be formulated.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Animais , Humanos , Klebsiella pneumoniae/genética , Escherichia coli/genética , Prevalência , Revisões Sistemáticas como Assunto , beta-Lactamases/genética
14.
Res Vet Sci ; 164: 105027, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776608

RESUMO

Rickettsia africae causes zoonotic African tick bite fever, which is a disease of "One Health" importance. There have been reported cases of tourists from Europe and Asia who have been bitten by ticks whilst visiting South Africa's nature reserves, and on their return to their countries, the display African Tick Bite Fever sickness. Hence, the aim of this study was to determine the occurrence of Rickettsia africae in Amblyomma hebraeum ticks infesting livestock in the North West Province. A total of 358 A. hebraeum ticks were collected from 60 ruminants (cattle, sheep and goats) in Mafikeng City of North West Province, South Africa. Ticks were identified morphologically and further confirmed by sequencing of their ITS2 gene. DNA was extracted from 60 pools of ticks which consisted of 5-6 adult ticks that were from the same ruminant host. Infections with Rickettsia spp. were found in 48%, 40%, and 32% of cattle, sheep, and goats, respectively, in amplification by PCR using the ompA gene. The ompA gene sequences showed that the Rickettsia spp. were identified as R. africae. Although the animals from whom the ticks were collected did not exhibit any clinical symptoms, it is well recognised that R. africae is a disease with significant zoonotic potential. Thus, it is important to use the "One Health" approach to formulate prevention and control measures for this pathogen for animal and human health as well as the tourism sector due to the ecotourism importance of the resultant disease.


Assuntos
Doenças das Cabras , Infecções por Rickettsia , Rickettsia , Doenças dos Ovinos , Rickettsiose do Grupo da Febre Maculosa , Carrapatos , Animais , Bovinos , Humanos , Ovinos , Amblyomma , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/veterinária , Infecções por Rickettsia/microbiologia , África do Sul/epidemiologia , Rickettsia/genética , Cabras , Rickettsiose do Grupo da Febre Maculosa/veterinária , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia
15.
Vet Med Sci ; 9(5): 2185-2191, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592439

RESUMO

BACKGROUND: Coxiella burnetii is a bacterial pathogen that causes query fever and coxiellosis in humans and animals, respectively. There is a scarcity of studies on the prevalence of C. burnetii infections in rats and chickens in South Africa. OBJECTIVE: The aim of this study was to determine the occurrence of C. burnetii in rats and chickens sampled from poultry farms in the North West Province of South Africa. METHODS: DNA was extracted from rodent kidneys (n = 68) and chicken faeces (n = 52). Two rodent pest species, namely Rattus rattus and Rattus tanezumi, were identified by analysis of CO1 gene sequences. Detection of C. burnetii was carried out using polymerase chain reaction assays targeting 23S rRNA, 16S rRNA and IS111 markers. RESULTS: C. burnetii was detected in 16.2%, 8.8% and 25% of R. rattus, R. tanezumi and chickens, respectively. CONCLUSIONS: The findings in this study demonstrate that rodents and chickens are harbouring C. burnetii at sampled poultry farms. There should be frequent screening for C. burnetii in poultry operations. The likelihood of future transmission between rodents and chickens, including humans, also needs to be investigated.


Assuntos
Coxiella burnetii , Humanos , Animais , Ratos , Coxiella burnetii/genética , Coxiella , Galinhas , Aves Domésticas , Fazendas , RNA Ribossômico 16S , África do Sul/epidemiologia
16.
Pathogens ; 12(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37513722

RESUMO

Chemical acaricides are widely used to control ticks and tick-borne pathogens in cattle. However, prolonged and indiscriminate use of these chemicals inevitably leads to the selection of resistant ticks. In-vitro bioassays (adult and larval immersion tests) were conducted to assess amitraz and deltamethrin resistance in Rhipicephalus (Boophilus) microplus populations from communal farms of the King Sabata Dalindyebo municipality of South Africa. Data generated on percentage inhibition of oviposition (%IO) revealed that all the tick populations assessed showed resistance (%IO ≤ 95%) to at least one of the acaricides. All six tick populations assessed for efficacy (%IO ≥ 95%) at the DD) with deltamethrin were resistant (%IO ≤ 95%) and only one of the six tick populations assessed for efficacy with amitraz was susceptible. Based on the resistance ratios (RR), the adult immersion test detected amitraz and deltamethrin resistance in three (RR ranging from 2.30 to 3.21) and five (RR ranging from 4.10 to 14.59) of the six tick populations, respectively. With the larval immersion test, deltamethrin and amitraz resistance (larval mortality < 90% at the DD) was detected in all four and three of four R. (B.) microplus populations assessed, respectively. These data are critical for the design of an effective and sustainable tick control strategy on the communal farms.

17.
Heliyon ; 9(6): e16123, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274713

RESUMO

Water is essential for the survival of humans, animals and plants. Numerous research has been conducted on the prevalence and antibiotic resistance of Escherichia coli (E. coli) in water from various African countries, however, there is lack of comprehensive analysis of published literature. We conducted a systematic review and meta-analysis following the PRISMA guidelines where articles published in English language between January 2000 and March 2022 were searched from ScienceDirect, PubMed, Google Scholar, Scopus, African Journal Online (AJO), and Africa Index Medicus (AIM). Comprehensive Meta-Analysis (CMA) Ver 3.0 software was used to analyze the data. The pooled prevalence estimate (PPE) with 95% confidence interval was calculated using the random-effects model (CI). The overall PPE and antimicrobial resistance trends of E. coli isolated from water was screened from 4009 isolates which were isolated from 2586 samples. We extracted data from 17 studies including drinking water (n = 6), rivers (n = 5), wastewaters (n = 4) and wastewater/river (n = 1) which are all covering 27 countries in Africa with 3438 isolates. The PPE of E. coli in water was 71.7% (0.717; 95% CI: 0.562-0.833). The highest PPE antibiotic resistance was against penicillin followed by erythromycin, and ampicilin with resistance rates of 93.4%, 92.3%, and 69.4%, respectively. This systematic review provides critical evidence of E. coli consolidated prevalence and antibiotic resistance profiles, as well as regions where future studies and enhanced reporting could be beneficial in the African continent.

18.
Microorganisms ; 11(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374941

RESUMO

Houseflies are alleged reservoirs as well as vectors of human and animal pathogens, including bacteria, because they frequently have contact with animal excreta and decaying organic substances. The rapid adaptation process of ingested microbes in the insect gut may involve gene transfer, including antibiotic resistance determinants among different bacterial strains. Six hundred and fifty-seven (n = 657) houseflies were collected from hospices and were identified morphologically and genetically using the 16S rRNA, CO1, and ITS2 barcoding genes. This study also characterized the bacterial communities harboured by the captured houseflies using 16S rRNA metabarcoding on the next-generation sequencing (NGS) platform and further sought to detect antibiotic resistance traits by using gene-specific PCR assays. Generated sequences for the targeted gene fragments matched with Musca domestica and all the sequences were deposited to the GenBank database. The 16S rRNA metabarcoding analysis revealed that the most abundant phyla detected with variable abundance observed among all the houseflies were Proteobacteria, followed by Firmicutes, and Bacteroidetes. Furthermore, the NGS data revealed the presence of multiple bacterial genera, including Providencia, Enterobacter, Dysgonomonas, Escherichia-Shigella, Klebsiella, Pseudomonas, and Streptococcus, which are known to harbour potentially pathogenic species of animals and humans. Antibiotic resistance genes detected from the housefly DNA in this study included ermB, tetA, blaSHV, and blaTEM. Moreover, these genes are associated with resistance to erythromycin, tetracycline, and beta-lactams antibiotics, respectively. The presence of bacterial pathogens and the detection of antibiotic resistance genes from the houseflies collected from the hospices indicates the possible health risk to patients in hospices and the surrounding community. Therefore, it is imperative to keep high standards of hygiene, food preparation, safety, and control of houseflies in hospices.

19.
Parasitology ; 150(9): 769-780, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246558

RESUMO

Giardiasis, caused by Giardia duodenalis, is a leading cause of diarrhoea in resource-poor countries. To gain a better insight into the epidemiology of Giardia in Africa, we undertook a robust study to comprehend the distribution and prevalence of Giardia infection in humans, animals and their dispersal in the environment. Our protocol was registered with PROSPERO (registration number CRD42022317653). Deep literature search from 5 electronic databases, namely, AJOL, Google scholar, PubMed, ScienceDirect and Springer Link was performed using relevant keywords. Meta-analysis was performed using a random-effects model and heterogeneity among studies was evaluated using Cochran's Q and the I2-statistic. More than 500 eligible studies published from 1 January 1980 until 22 March 2022 were retrieved. In humans, exactly 48 124 Giardia spp. infection cases were registered from the 494 014 stool samples examined resulting in a pooled prevalence estimate (PPE) of 8.8% using microscopy. Whereas copro-antigen tests and molecular diagnostic methods generated PPE of 14.3 and 19.5%, respectively, with HIV+ subjects and those with diarrhoeatic stool having infection rates of 5.0 and 12.3%, respectively. The PPE of Giardia spp. infection in animals using molecular methods was 15.6%, which was most prevalent in pigs (25.2%) with Nigeria registering the highest prevalence at 20.1%. The PPE of Giardia spp. contamination from waterbodies was 11.9% from a total of 7950 samples which were detected using microscopy, with Tunisia documenting the highest infection rate of 37.3%. This meta-analysis highlights the necessity of 'One Health' approach for consolidated epidemiological studies and control of giardiasis in the African continent.


Assuntos
Giardia lamblia , Giardíase , Humanos , Animais , Suínos , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/diagnóstico , Giardia , Prevalência , Nigéria/epidemiologia , Fezes
20.
AIMS Microbiol ; 9(1): 75-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891533

RESUMO

This is a systematic review and meta-analysis that evaluated the prevalence of Escherichia coli antibiotic-resistant genes (ARGs) in animals, humans, and the environment in South Africa. This study followed Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to search and use literature published between 1 January 2000 to 12 December 2021, on the prevalence of South African E. coli isolates' ARGs. Articles were downloaded from African Journals Online, PubMed, ScienceDirect, Scopus, and Google Scholar search engines. A random effects meta-analysis was used to estimate the antibiotic-resistant genes of E. coli in animals, humans, and the environment. Out of 10764 published articles, only 23 studies met the inclusion criteria. The obtained results indicated that the pooled prevalence estimates (PPE) of E. coli ARGs was 36.3%, 34.4%, 32.9%, and 28.8% for blaTEM-M-1 , ampC, tetA, and bla TEM, respectively. Eight ARGs (blaCTX-M , blaCTX-M-1 , blaTEM , tetA, tetB, sul1, sulII, and aadA) were detected in humans, animals and the environmental samples. Human E. coli isolate samples harboured 38% of the ARGs. Analyzed data from this study highlights the occurrence of ARGs in E. coli isolates from animals, humans, and environmental samples in South Africa. Therefore, there is a necessity to develop a comprehensive "One Health" strategy to assess antibiotics use in order to understand the causes and dynamics of antibiotic resistance development, as such information will enable the formulation of intervention strategies to stop the spread of ARGs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...